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Abstract. We analyze the semileptonic Bc→B
∗
u�
+�− decay in the framework of the Standard Model. We

calculate the Bc to B
∗
u transition form factors in QCD sum rules. Analytical expressions for the spectral

densities and gluon condensates are presented. The branching ratio of theBc→B
∗
u�
+�− decay is calculated,

and it is obtained that this decay can be detectable at forthcoming LHC machines.

PACS. 12.60.-i; 13.30.-a.; 13.88.+e

1 Introduction

The double heavy Bc mesons were discovered by the
CDF Collaboration [1], and were found to have a mass
mexpBc = (6.4±0.39±0.13)GeV. Recently the CDF Collab-
oration [2] announced an accurate determination of the Bc
meson mass, mBc = (6.2857±0.0053±0.0012)GeV. The
study of the Bc meson has received great interest, due
to its special properties: firstly, its lowest bound state is
composed of two heavy (charm and beauty) quarks with
open flavor; secondly, this meson attracts the interest of
physicists for checking predictions of pertubative QCD
in the laboratory; and lastly, the weak decay channels
of Bc meson are compared to the corresponding decay
channels of Bq (q = u, d, s) and can be divided into three
classes:

– the b quark decaying weakly, with the c quark as spec-
tator, e.g., Bc→ J/ψ�ν̄�;
– the c quark decaying weakly, with the b quark as spec-
tator, e.g., Bc→Bs�ν̄�;
– the annihilation channels likeBc→ �ν̄�,Bc→D∗−s K̄

0∗.

There are quite a few theoretical works studying the
various leptonic, semileptonic and hadronic exclusive de-
cay channels of Bc meson (for a review, see [3]).
From an experimental point of view, the study of weak

semileptonic decays of the Bc meson is quite important for
the determination of the Cabibbo–Kobayashi–Maskawa
(CKM) matrix elements, the leptonic decay constant fBc ,
etc.
Much more Bc mesons and more detailed information

on their decay properties are expected at the forthcom-
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ing LHC accelerator. In particular, this holds true for the
dedicated detectors BTeV and LHCB which are specially
designed for the analysis of B physics where one expects
to see up to 1010Bc mesons per year with a luminosity of
1034 cm−2 s−1 [4].
The rare decays constitute one of the most import-

ant classes of decays suitable for a more precise de-
termination of the parameters of the SM, as well as
for looking for new physics beyond the SM [5–7], since
the flavor changing neutral currents (FCNC) are ab-
sent in the SM at tree level and appear only at loop
level, due to the running of a virtual particle in the
loop.
Of the FCNC processes involving K and B mesons,

the main attention has been focused on B0–B̄0 mixing,
b→ s�+�−, b→ sγ, s→ d�+�−, s→ dνν̄, etc., since a top
quark runs in the loop.
The study of the FCNC decays in the charm sector has

not received enough attention. This can be explained by
the fact that in the SM, D0–D̄0 mixing [8, 9], as well as
FCNC decays [10–12], are expected to be very small. More-
over, long distance effects are quite huge, since the loop in
charm decay involves light down quarks.
In the present work we present a detailed analysis of

the semileptonic Bc → B∗u�
+�− decay in the framework

of the sum rules method. This mode is likely to be ob-
served in forthcoming accelerator experiments. Note that
the radiative decay Bc→ B∗uγ, which at the quark level
is described by the c→ u+ γ transition, is investigated
in [13, 14].
The plan of this work is as follows: In the following

section QCD sum rules of the three-point correlators are
considered and sum rules for the form factors that are re-
sponsible for the Bc→B∗u�

+�− decay are constructed. In
Sect. 3 we present our numerical results and conclusions.
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2 Sum rules for the transition form factors

In the present section we derive sum rules for the form fac-
tors that control the Bc→ B∗u�

+�− decay. This decay is
described by the c→ u�+�− transition at quark level. The
matrix element for the c→ u�+�− decay can be written in
the following form:

M=
Gα

4
√
2π

[
Ceff9 (mc)ūγµ(1−γ5)c�̄γµ�

+C10(mc)ūγµ(1−γ5)c�̄γµγ5�

−2mcC7(mc)ūiσµν
qν

q2
(1+γ5)c�̄γµ�

]
. (1)

At µ=mc, C
eff
9 is given by [15]

Ceff9 (mc) = C9(mW )

+
∑
i=d,s

λi

[
−
2

9
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+
8
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−
1
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(
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s̄

∣∣∣∣T (zi)
]
, (2)

where

T (zi) =

⎧
⎪⎪⎪⎪⎪⎪⎨
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2 arctan

[
1√

4z2
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]
(
for s̄ < 4z2i
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√
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i
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(
for s̄ > 4z2i

)
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where s̄= s/m2c , zi =mi/mc. The logarithmic dependence
on the internal quarkmassmi in T (zi) in (2) cancels a simi-
lar term in the function F1(xi) entering inC9(mW ), leaving
no spurious divergences in the limit mi→ 0. It should be
noted here that QCD corrections do not effect C10, i.e.,
C10(mc) = C10(mW ).
The QCD corrections are particularly important for the

Wilson coefficient C7 and in the numerical analysis we use
the two-loop QCD-corrected value of Ceff7 which is calcu-
lated in [11].
Thevaluesof theWilsoncoefficientsatµ=mW aregiven

by the following expressions (see for example [10, 13]):

C7(mW ) =−
∑
i=d,s,b

λiF2(xi) ,

C9(mW ) =
1

s2W

∑
i=d,s,b

λi
[(
Cbox(xi)+C

Z(xi)
)

−2s2W
(
F1(xi)+C

Z(xi)
)]
,

C10(mW ) =−
1

s2W

∑
i=d,s,b

λi
(
Cbox(xi)+C

Z(xi)
)
, (3)

where λi = VciV
∗
ui, xi = m

2
i /m

2
W . The functions F1(x),

F2(x), C
box(xi) and C

Z(xi) are those derived in [16] and
are all given in Appendix A.
Similar to the b→ s�+�− transition, the Wilson co-

efficient in the c→ u�+�− transition receives long dis-

tance contributions which have their origin in the real q̄q
intermediate state, i.e., ρ and ω mesons. These contri-
butions can be written via the following replacement in
Ceff9 (mc) [17]:

Ceff9 → C
eff
9 +

3π

α2

∑
i

κi
mViΓVi→�+�−

m2Vi − ŝ− imViΓVi
,

wheremVi and ΓVi are the resonance mass and width. The
Fudge factor κi is determined in [10] to have the values
κρ = 0.7 and κω = 3.1.
Having the matrix element for c→ u�+�− transition

at hand, our next problem is the calculation of the ma-
trix element for the Bc→ B∗u�

+�− decay. It follows from
(1) that, in order to calculate the amplitude of the Bc→
B∗u�

+�− decay, the following matrix elements are needed:

〈B∗u |ūγµ(1−γ5)c|Bc〉 ,

〈B∗u |ūiσµνq
ν(1+γ5)b|Bc〉 .

These hadronic matrix elements of the Bc→B∗u�
+�− de-

cay can be parametrized in terms of the form factors in the
following way:

〈B∗u(p
′, ε) |ūγµ(1−γ5)c|Bc(p)〉

= εµναβε
∗νpαp′β

2V (q2)

mBc +mB∗u

− i

[
ε∗µ(mBc +mB∗u)A1(q

2)− (ε∗q)Pµ
A2(q

2)

mBc +mB∗u

− (ε∗q)
2mB∗u
q2

[
A3(q

2)−A0(q
2)
]
qµ

]
, (4)

〈B∗u(p
′, ε) |ūσµνq

ν(1+γ5)c|Bc(p)〉

= 2iεµραβε
∗ρpαp′βT1(q

2)

+
[
ε∗µ(m

2
Bc −m

2
B∗u
)− (ε∗q)Pµ

]
×T2(q

2)

+ (ε∗q)

[
qµ−

q2

m2Bc −m
2
B∗u

Pµ

]
T3(q

2) , (5)

where Pµ = (p+p′)µ, qµ = (p−p′)µ and ε∗ is the polariza-
tion 4-vector of the vector B∗u meson. Note that the form
factor A3(q

2) can be written as a linear combination of A1
and A2:

A3(q
2) =

mBc +mB∗u
2mB∗u

A1(q
2)−

mBc −mB∗u
2mB∗u

A2(q
2) ,

(6)

and in order to guarantee the finiteness of the results at
q2 = 0, A3(0) =A0(0) should be satisfied.
The identity

σµνγ5 =−
i

2
εµναβσ

αβ

leads to the following relation between the form factors T1
and T2:

T1(0) = T2(0) .
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Moreover, it is shown in [18] that the form factors T1(q
2)

and A0(q
2) are also related, i.e.,

A0(q
2) =−T1(q

2) ,

and so are T3(q
2), A1(q

2) and A2(q
2) through the relation

T3(q
2) =−

[
mBc+mB∗u
2mB∗u

A1(q
2)

−
m2Bc +3m

2
B∗u
− q2

2mB∗u(mBc +mB∗u)
A2(q

2)

]
. (7)

It follows from these relations that in describing the Bc→
B∗u�

+�− decay, we need to know only V , A1 and A2. In the
further analysis the values of these form factors at q2 = 0
are needed (see Sect. 3). Note that at this point the form
factor T1(0) is calculated in [14], and hence we do not
present its expression in this work.
As has already been noted, in order to calculate these

form factors, appearing in the Bc→B∗u�
+�− decay, we ex-

plore the three-point QCD sum rules [19].
For the evolution of the above-mentioned form factors

in the framework of the QCD sum rules, we start with the
following three-point correlation functions:

Πνµ =−

∫
d4xd4ye−i(p1x−p2y)

×〈0|T
{
JB∗uν(y)Jµ(0)JBc(x)

}
|0〉 , (8)

where JνB∗u = b̄(y)γ
νu(y) is the interpolating current of the

B∗u meson, Jµ = ū(0)γµ(1+ γ5)c(0), and JBc = c̄(x)i(1+
γ5)b(x) is the interpolating current of the Bc meson. The
contribution of the scalar part of this current to Bc is zero.
The Lorentz structures of these correlators can be writ-

ten in the following form:

Π(V+A)νµ = ενµαβp
αp′βΠV +ΠA1gµν+Π2PµPν

+ΠA2Pνqµ+Π3Pµqν +Π4qµqν . (9)

The phenomenological part of these correlators can
be calculated by inserting a complete set of intermediate
states with the same quantum numbers as the currents JB∗u
and JBc possess in the correlation functions (4) and (5),
and expressing these functions as the sum of the contribu-
tions of the lowest lying and excited states, we get

Πνµ(p
2
1, p
2
2, q
2) =−

〈0|JB∗uν |B
∗
u〉〈B

∗
u|Jµ|Bc〉〈Bc|JBc |0〉

(p21−m
2
Bc
)(p22−m

2
B∗u
)

+contributions from higher states .

(10)

The matrix elements in (10) are defined as follows:

〈0|JµB∗u |B
∗
u〉= fB∗umB∗uε

∗µ

i〈Bc|c̄(1+γ5)b|0〉=
fBcm

2
Bc

mb+mc
. (11)

Performing summation over the polarization of B∗u me-
son on the matrix elements 〈B∗u|ūγµ(1+γ5)c|Bc〉 that are
given in (4), we get for the physical part

Π(V+A)νµ =−
fBcfB∗um

2
Bc

(mb+mc)(p21−m
2
Bc
)(p22−m

2
B∗u
)

×

{
ενµαβp

αp′β
2V

mBc +mB∗u

+i(mBc +mB∗u)

(
− gµν+

(P − q)µ(P− q)ν
4m2B∗u

)
A1

−
i

mBc +mB∗u
Pµ

(
− qν+

p′q(P− q)ν
2m2B∗u

)
A2

−
2imB∗u
q2
qµ

(
− qν+

p′q(P− q)ν
2m2B∗u

)
(A3−A0)

}
.

(12)

The expressions of the form factors V , A1 and A2 can
be determined by choosing the coefficients of the Lorentz
structures ενµαβp

αp′β , igµν and Pµqν in the correlator

functionΠ
(V+A)
µν , respectively.

On the other side, the three-point correlator func-
tion can be calculated by the operator product expansion
(OPE) in the deep Euclidean region p21 � (mb+mc)

2,
p22�m

2
b .

The time ordered products of the currents in the three-
point correlator function in (1) can be expanded in terms of
a series of local operators with increasing dimension, as is
shown in the following:

−

∫
d4xd4ye−i(px−p

′y)T
{
JB∗uνJµJBc

}

= (C0)νµI+(C3)νµq̄q+(C4)νµGαβG
αβ

+(C5)νµq̄σαβG
αβq+(C6)νµq̄Γ qq̄Γ

′q , (13)

where (Ci)νµ are the Wilson coefficients, I is the unit op-
erator, Gαβ is the gluon field strength tensor, Γ and Γ

′

are the matrices appearing in the calculations. Considering
the vacuum expectation value of the OPE, the correlator
function can be written in terms of the local operators as
follows:

Πνµ
(
p21, p

2
2, q
2
)
= (C0)νµ+(C3)νµ〈q̄q〉+(C4)νµ〈G

2〉

+(C5)νµ〈q̄σαβG
αβq〉+(C6)νµ〈q̄Γ qq̄Γ

′q〉 .
(14)

The values of the heavy quark condensates are related to
the vacuum expectation value of the gluon operators in the
following manner:

〈Q̄Q〉=−
1

12mQ

αs

π
〈G2〉−

1

360m3Q

αs

π
〈G3〉 , (15)

where Q is the heavy quark and the heavy quark conden-
sate contributions are suppressed by inverse of the heavy
quark mass, and for this reason we can safely omit them.
It should be noted here that, in principle, the light

quark condensate does give a contribution to the corre-
lator function, but its contribution becomes zero after
a double Borel transformation. Therefore, the only non-
perturbative contribution to the above-mentioned correla-
tor function comes from the gluon condensate.
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As a result, in the lowest order of perturbation theory,
the three-point functions receive a contribution from the
bare-loop and gluon condensates, i.e.,

Πi
(
p21, p

2
2, q
2
)
=Πperi

(
p21, p

2
2, q
2
)

+Π
〈G2〉
i

(
p21, p

2
2, q
2
)
q
αs

π
〈G2〉 . (16)

The bare-loop contribution can be obtained using the dou-
ble dispersion representation

Πperi =−
1

(2π)2

∫
ρperi (s, s

′, Q2)

(s−p2)(s′−p′2)
dsds′

+subtraction terms , (17)

in the variable p2 and p′2, whereQ2 =−q2. The integration
region in (17) is determined by the inequalities

−1≤
2ss′+(s+ s′+Q2)

(
m2c−m

2
b− s

)
+2sm2b

λ1/2(s, s′,−Q2)λ1/2 (m2b ,m
2
c , s)

≤ 1 ,

(18)

where λ(a, b, c) = a2+ b2+ c2−2ab−2ac−2bc.
The spectral densities ρperi (s, s

′, Q2) can be calculated
by using the Cutkovsky rule, i.e., by replacing the propaga-
tors with Dirac delta functions:

1

k2−m2
→−2iπδ(k2−m2) . (19)

After standard calculations, we get for the spectral densi-
ties

ρV =
2Ncmc

λ3/2(s, s′,−Q2)
(2s′∆1−u∆2) , (20)

ρA1 =−
2Ncmc

λ3/2(s, s′,−Q2)

×
[
m4cs

′+m2cm
2
b(u−2s

′)+m2cs
′(u−2s)

+Q2
(
m2bu− ss

′−m4b
)
+
1

2
λ(s, s′,−Q2)

]
,

(21)

ρA2 =−
Ncmc

λ3/2(s, s′,−Q2)

×
[
− (2s∆2−u∆1)+B1+C−D−E

]
, (22)

where Nc = 3 is the color factor, u= s+ s
′+Q2, ∆1 = s+

m2b −m
2
c, ∆2 = s

′+m2b, and the explicit forms of the func-
tions B, C, D, and E are given in Appendix B. According
to the QCD sum rule philosophy, the contributions com-
ing from the excited states are approximated as a bare-loop
contribution, starting from some thresholds s and s′, in
accordance with the quark–hadron duality. Note that we
neglected O(αs/π) hard gluon corrections to the bare-loop
diagrams, since they are not available yet. However, we ex-
pect their contributions to be about ∼ 10%, so that if the
accuracy of QCD sum rules is taken into account, these cor-
rections would not change the results drastically.
The next problem is the calculation of the gluon con-

densate contributions to the correlation functions. The

Fig. 1. Gluon condensate contribution diagrams to the Bc→
B∗u�

+�− decay. In this figure the dashed line represents the
soft gluon line, c, u, b identify the quark lines, p and p′ are the
four-momenta of the incomming Bc and outgoing B

∗
u mesons,

respectively, and q is the four-momentum of the electroweak
current

gluon condensate contributions to the three-point sum
rules are described by the diagrams presented in Fig. 1.
The calculations of these diagrams are carried out in the
Fock–Schwinger fixed-point gauge [20–22]

xµAaµ = 0 ,

where Aaµ is the gluon field. In calculating the gluon con-
densate contributions, integrals of the following types are
encountered:

I0[a, b, c] =∫
d4k

(2π)4
1

[k2−m2b]
a
[(p+k)2−m2c]

b
[(p′+k)2]

c
,

Iµ[a, b, c] =∫
d4k

(2π)4
kµ

[k2−m2b]
a
[(p+k)2−m2c]

b
[(p′+k)2]

c
,

Iµν [a, b, c] =∫
d4k

(2π)4
kµkν

[k2−m2b]
a
[(p+k)2−m2c]

b
[(p′+k)2]

c
. (23)

These integrals can be calculated by continuing to Eu-
clidean space-time and using the Schwinger representation
for the Euclidean propagator:

1

k2+m2
=
1

Γ (α)

∫ ∞
0

dααn−1e−α(k
2+m2) , (24)

which is very suitable for the Borel transformation since

Bp̂2(M
2)e−αp

2
= δ(1/M2−α) . (25)
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Performing the integration over the loop momentum and
over the two parameters which we have used in the expo-
nential representation of the propagators [21], and apply-
ing double Borel transformations over p2 and p′2, we get
the Borel transformed form of the integrals in (23) (see
also [21])

Î0(a, b, c) =
(−1)a+b+c

16π2 Γ (a)Γ (b)Γ (c)

(
M21

)2−a−b (
M22

)2−a−c

×U0(a+ b+ c−4, 1− c− b) ,

Îµ(a, b, c) =
1

2

[
Î1(a, b, c)+ Î2(a, b, c)

]
Pµ

+
1

2

[
Î1(a, b, c)− Î2(a, b, c)

]
qµ ,

Îµν(a, b, c) = Î6(a, b, c)gµν +
1

4

(
2Î4+ Î3+ Î5

)
PµPν

+
1

4

(
− Î5+ Î3

)
Pµqν +

1

4

(
− Î5+ Î3

)
Pνqµ

+
1

4

(
−2Î4+ Î3+ Î5

)
qµqν , (26)

where

Î1(a, b, c) = i
(−1)a+b+c+1

16π2 Γ (a)Γ (b)Γ (c)

(
M21

)2−a−b (
M22

)3−a−c

×U0(a+ b+ c−5, 1− c− b) ,

Î2(a, b, c) = i
(−1)a+b+c+1

16π2 Γ (a)Γ (b)Γ (c)

(
M21

)3−a−b (
M22

)2−a−c

×U0(a+ b+ c−5, 1− c− b) ,

Î3(a, b, c) = i
(−1)a+b+c

32π2 Γ (a)Γ (b)Γ (c)

(
M21

)2−a−b (
M22

)4−a−c

×U0(a+ b+ c−6, 1− c− b) ,

Î4(a, b, c) = i
(−1)a+b+c

16π2 Γ (a)Γ (b)Γ (c)

(
M21

)3−a−b (
M22

)3−a−c

×U0(a+ b+ c−6, 1− c− b) ,

Î5(a, b, c) = i
(−1)a+b+c

16π2 Γ (a)Γ (b)Γ (c)

(
M21

)4−a−b (
M22

)2−a−c

×U0(a+ b+ c−6, 1− c− b) ,

Î6(a, b, c) = i
(−1)a+b+c+1

16π2 Γ (a)Γ (b)Γ (c)

(
M21

)3−a−b (
M22

)3−a−c

×U0(a+ b+ c−6, 2− c− b) , (27)

whereM21 andM
2
2 are the Borel parameters in the s and s

′

channel, respectively, and the function U0(α, β) is defined
as

U0(a, b) =

∫ ∞
0

dy(y+M21 +M
2
2 )
ayb

× exp

[
−
B−1

y
−B0−B1y

]
,

where

B−1 =
m2c
M21

[
m2cM

2
2 +M

2
1

(
m2c+Q

2
)]
,

B0 =
1

M21M
2
2

[
m2bM

2
1 +M

2
2

(
m2b +m

2
c

)]
,

B1 =
m2b
M21M

2
2

. (28)

The hat in (26) and (27) means that they are double Borel
transformed form of integrals. Performing double Borel
transformations on the variables p2 and p′2 on the physical
parts of the correlator functions andbare-loopdiagramsand
equating two representations of the correlator functions, we
get the sum rules for the form factorsV ,A1 andA2:

V =−
(mb+mc)(mBc +mB∗u)

2fBcm
2
Bc
fB∗umB∗u

em
2
Bc
/M21 e

m2
B∗u
/M22

×

{
1

4π2

∫ s′0
m2
b

ds′
∫ s0
sL

ρV(s, s
′, Q2)e−s/M

2
1 e−s

′/M22

− i
1

24π2

〈αs
π
G2

〉
CV4

}
,

A1 =
(mb+mc)

fBcm
2
Bc
fB∗umB∗u(mBc +mB∗u)

em
2
Bc
/M21 e

m2
B∗u
/M22

×

{
1

4π2

∫ s′0
m2
b

ds′
∫ s0
sL

ρA1(s, s
′, Q2)e−s/M

2
1 e−s

′/M22

− i
1

24π2

〈αs
π
G2

〉
C
A1
4

}
,

A2 =−
(mb+mc)(mBc +mB∗u)

fBcm
2
Bc
fB∗umB∗u

(
m2Bc +3m

2
B∗u
+Q2

)

× em
2
Bc
/M21 e

m2
B∗u
/M22

×

{
1

4π2

∫ s′0
m2
b

ds′
∫ s0
sL

ρA2(s, s
′, Q2)e−s/M

2
1 e−s

′/M22

− i
1

24π2

〈αs
π
G2

〉
C
A2
4

}
,

where s0 and s
′
0 are the continuum thresholds in the pseu-

doscalar Bc and B
∗
u channels, respectively, and the lower

bound integration limit of s is given as

sL =

(
m2b + q

2−m2c− s
′
) (
m2cs

′−m2bq
2
)

(m2c− q
2) (m2b − s

′)
. (29)

Explicit expressions of CV4 , C
A1
4 and C

A2
4 are all presented

in Appendix C. At the end of this section we present the
dilepton invariant mass distribution for the Bc→B∗u�

+�−

decay. Using the parametrization of the Bc→ B∗u transi-
tion in terms of form factors and (1), the matrix element of
the Bc→B∗u�

+�− decay can be written as

M=
Gα

4
√
2π
mBc

[
J1µ�̄γµ�+J

2
µ�̄γµγ5�

]
, (30)



418 T.M. Aliev, M. Savcı: Analysis of the semileptonic Bc→B∗u�
+�− decay from QCD sum rules

where

J1µ =G1(ŝ)εµραβε
∗ρp̂αp̂′β− iG2(ŝ)ε

∗
µ

+iG3(ŝ)(ε
∗q̂)P̂µ+iG4(ŝ)(ε

∗q̂)q̂µ ,

J2µ =H1(ŝ)εµραβε
∗ρp̂αp̂′β− iH2(ŝ)ε

∗
µ

+iH3(ŝ)(ε
∗q̂)P̂µ+iH4(ŝ)(ε

∗q̂)q̂µ , (31)

where P̂µ = Pµ/mBc , q̂µ = qµ/mBc and ŝ= q
2/m2Bc , and

G1(ŝ) =
2

1+ r̂
Ceff9 V (ŝ)+

4r̂c
ŝ
Ceff7 T1(ŝ) ,

G2(ŝ) = (1+ r̂)

[
Ceff9 A1(ŝ)+

2r̂c
ŝ
(1− r̂)Ceff7 T2(ŝ)

]
,

G3(ŝ) =
1

1− r̂2

{
(1− r̂)Ceff9 A2(ŝ)

+2r̂cC
eff
7

[
T3(ŝ)+

1− r̂2

ŝ
T2(ŝ)

]}
,

G4(ŝ) =
1

ŝ

{
Ceff9

[
(1+ r̂)A1(ŝ)− (1− r̂)A2(ŝ)−2r̂A0(ŝ)

]

−2r̂cC
eff
7 T3(ŝ)

}
,

H1(ŝ) =
2

1+ r̂
C10V (ŝ) ,

H2(ŝ) = (1+ r̂)C10A1(ŝ) ,

H3(ŝ) =
1

1+ r̂
C10A2(ŝ) ,

H4(ŝ) =
1

ŝ
C10

[
(1+ r̂)A1(ŝ)− (1− r̂)A2(ŝ)−2r̂A0(ŝ)

]
,

(32)

where r̂ =mB∗u/mBc and r̂c =mc/mBc .
Using (30), the dilepton invariant mass distribution

takes the following form:

dΓ

dŝ
=
G2α2s
210π5

m5Bc

√
λv

{
1

3
ŝλ

(
1+2

r̂2�
ŝ

)
|G1|

2
+
1

3
ŝλv2 |H1|

2

+
1

4r̂2

[(
λ−
λv2

3
+8r̂2(ŝ+2r̂2� )

)
|G2|

2

+

(
λ

3
(3− v2)+8r̂2ŝv2

)
|H2|

2

]

+
λ

4r̂2

[
λ

3
(3− v2) |G3|

2

+

(
λ

3
(3− v2)+4r̂2� (2+2r̂

2− ŝ)

)
|H3|

2

]

−
1

2r̂2

[
λ

3
(3− v2)(1− r̂2− ŝ)Re [G2G

∗
3]

+

(
λ

3
(3− v2)(1− r̂2− ŝ)+4r̂2�λ

)
Re [H2H

∗
3 ]

]

−2λ
r̂2�
r̂2

(
Re [H2H

∗
4 ]− (1− r̂

2)Re [H3H
∗
4 ]
)

+
r̂2�
r̂2
ŝλ |H4|

2

}
, (33)

where

λ= λ(1, r̂2, ŝ) ,

and

v =

√
1−
4m2�
q2

is the lepton velocity, and finally

r2� =
m2�
m2Bc

.

3 Numerical analysis

In this section we present our numerical calculation of the
form factors A1, A2, A0, V , T1, T2 and T3. The values of
the input parameters appearing in the sum rules for the
form factors are mBc = 6.4 GeV, mB∗u = 5.325GeV, fBc =
0.385GeV [24], fB∗u = 160MeV [25],mb = 4.8 GeV,mc(µ=
mc) = 1.26 GeV, 〈(αs/π)G2〉 = 0.012GeV4[19]. The decay
constants of the Bc and B

∗
u mesons are determined from

the two-point QCD sum rules. As has already been noted,
in bare-loop calculations we neglect O(αs/π) corrections.
For consistency, these corrections are also neglected in the
calculations for the leptonic decay constants.
The parameters s0 and s

′
0, which are the continuum

thresholds of Bc and B
∗
u mesons, respectively, are also de-

termined from the two-point QCD sum rules, and they are
taken to be s0 = 50GeV

2 and s′0 = 35GeV
2. These con-

tinuum thresholds are determined from the conditions that
guarantees the sum rules to have the best stability in the
allowedM21 andM

2
2 region.

The Borel parameters M21 and M
2
2 in the sum rules

are auxiliary parameters, and physical quantities should
be independent of them. Therefore it is necessary to look
for working regions of these parameters where physical re-
sults exhibit the best stability. The working regions ofM21
andM22 aredeterminedby requiring that the continuumand
higher states contributions are effectively suppressed,which
ensures that the resultsdonot sensitivelydependonsuchex-
citedstates.Werequirealso that thecontributiongluoncon-
densate is not too large,which guarantees that the contribu-
tionsofhigherdimensionaloperatorsare small.Ouranalysis
verifies that the working regions 20GeV2 ≤M21 ≤ 40 GeV

2

and 10 GeV2 ≤M22 ≤ 15GeV
2 of the Borel parameters sat-

isfy both of the above-mentioned requirements.
IntheseregionsofM21 andM

2
2 , thegluoncondensatecon-

tribution constitutes approximately 5%, and higher state
contributions constitute atmost 30%of the total result.
Our numerical results for the form factors at q2 = 0 are

V (0) = 0.09±0.01 ,

A1(0) =−0.17±0.02 ,
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A2(0) = 1.10±0.10 ,

T1(0) = T2(0) =−A0(0) = 0.23±0.03 , (34)

and the value of the form factor T3(0) can easily be ob-
tained from (7).
The errors are estimated by the variation of the Borel

parameters M21 and M
2
2 , the variation of the continuum

thresholds s0 and s
′
0, the variation of the b and c quark

masses and the leptonic decay constants fBc and fB∗u . The
main uncertainty comes from the thresholds and the de-
cay constants, which is about ∼ 20% of the central value,
while the other uncertainties are small, constituting a few
percent. Note that all the uncertainties are added quadrat-
ically. Here we would like to make the following cautionary
note. It is well known that for heavy quarkonia, where the
quark velocities are small, the αs/v corrections caused by
the Coulomb-like interaction of quarks are essential, where
v is the quark velocity. In our case, we have two expan-
sion parameters, αs/v1 and αs/v2, where v1 and v2 are
the relative velocities of the quarks (bc̄) and (b̄u) (for the
massless u quark v2 = 1). When these corrections are taken
into account the value of the form factors at Q2 = 0 are
twice as large. In the further numerical analysis we will
omit the dependence of the form factors on q2, which gives
small contributions to the overall result. Indeed, the max-
imum value of q2 in the decay under consideration is about
(mBc−mB∗u)

2 ∼ 1 GeV2 and assuming that the simple pole
model correctly describes the q2 dependence of the form
factors, it is easy to see that q2/m2Bc is about 1/36; i.e., the
results could be changed maximally by about 3%.
Integrating (32) over q2 in the whole physical region and

using the total mean life time τ � 0.46 ps of the Bc me-
son [26], the branching ratio of theBc→B∗u�

+�− decay is

B(Bc→B
∗
u�
+�−) =

{
1.30×10−9 ,
3.88×10−7 ,

where the upper value corresponds to the case when only
short distance contributions are taken into account, and
the lower one corresponds to the case when short and long
distance contributions due to the ρ and ω resonances are
taken into account.
It follows from this result that the Bc→ B∗u�

+�− decay
with the above-presentedwidth can bemeasurable at LHC.
In conclusion, we calculated the Bc → B∗u transition

form factors V (q2),A1(q
2),A2(q

2) and T1(q
2) in the frame-

work ofQCDsumrules.Our calculations show that this rare
semileptonic decay can bemeasurable at LHC.Using the re-
sults of the form factors calculated in the present work, we
estimate the branching ratio of theBc→B∗u�

+�− decay.

Acknowledgements. One of the authors (T.M.A.) is grateful to
S. Fajfer for useful discussion and TÜBİTAK for partial sup-
port of this work under project 105T131.

Appendix A

In this appendix we present the expressions of the func-
tions F1, F2 C

box and CZ , which enter the expressions of

the Wilson coefficients C7(mW ), C9(mW ) and C10(mW ):

Cbox(xi) =
3

8

[
−

1

xi−1
+
xi lnxi
(xi−1)2

]
,

CZ(xi) =
xi

4
−
3

8

1

xi−1
+
3

8

2x2i −xi
8(xi−1)2

lnxi ,

F1(xi) =Qd

{[
1

12

1

xi−1
+
13

12

1

(xi−1)2
−

1

2(xi−1)3

]
xi

+

[
2

3

1

xi−1
+

(
2

3

1

(xi−1)2
−
5

6

1

(xi−1)3

+
1

2

1

(xi−1)4

)
xi

]
lnxi

}

−

[
7

3

1

xi−1
+
13

12

1

(xi−1)2
−
1

2

1

(xi−1)3

]
xi

−

[
1

6

1

xi−1
−
35

12

1

(xi−1)2
−
5

6

1

(xi−1)3

+
1

2

1

(xi−1)4

]
xi lnxi ,

F2(xi) =−Qd

{[
−
1

4

1

xi−1
+
3

4

1

(xi−1)2
+
3

2

1

(xi−1)3

]

−
3

2

x2i lnxi
(xi−1)4

}

+

[
1

2

1

xi−1
+
9

4

1

(xi−1)2
+
3

2

1

(xi−1)3

]
xi

−
3

2

x3i lnxi
2(xi−1)4

, (A.1)

wherexi =m
2
i /m

2
W , andQd is the downquark charge.Note

that, in these expressions, we omit the gauge dependent
terms γ(ξ, xi) [16], because these terms are canceled out in
the combinationsCbox(xi)+C

Z(xi) andF1(xi)+C
Z(xi).

Appendix B

In this appendix we present the expressions of the func-
tions B1, C, D, and E which appear in the calculations of
the spectral density ρA2 (see (22)). We have

B1 =
1

λ(s, s′,−Q2)
I0

{
m2b

[
(Q2+ s)2−2s′(2Q2+ s)+ s′2

]

+2m2bs
′
[
Q4− (s− s′)2+3m2c(u−2s

′)+Q2u
]

+ s′2
[
6m4c+Q

4+(s− s′)2+6m2c(u−2s)

+2Q2(s−2s′)
]}
,

C =D =
1

λ2(s, s′,−Q2)
I0

×
{
m2b(u− s

′)
[
−Q4+m2b(2Q

2− s)+ s2
]
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+ s′
[
s(2Q2− s)(Q2+ s)+m4b(Q

2+2s)

−m2b(Q
4+6Q2s+ s2)

]

+ s′
2
[
m4b+m

2
b(s−Q

2)− s(Q2+2s)
]

+ s′
3
(m2b− s)−3m

4
cs
′u

+2m2c

[
−m2b

(
(u− s′)2+ s′(s−Q2)−2s′

)

− s′
(
Q2(u−2s)−2s2+ s′u

)]}
,

E =
1

λ3/2(s, s′,−Q2)
I0

{
s2
[
m4c(u+6ss

′)

+2m2bs
[
Q4− (s− s′)2+Q2u

]

+m4b

[
Q4+(s− s′)2+2Q2(−2s+ s′)

]

+2m2c

[
−m3b

(
q2(u−2s)−2s2+ s′u

)

+ s
(
− (u− s′)2+ s′(−s+Q2)+2s′

2
)]}
, (B.1)

where

I0 =
1

4λ1/2(s, s′,−Q2)
.

Appendix C

In this appendix we give the explicit expressions of the co-
efficients of the gluon condensate which enter the sum rules
for the form factors V , A1 and A2, respectively:

CV4 =192mcÎ1(1, 3, 1)+192m
3
cÎ1(1, 4, 1)

−32mcÎ1(2, 1, 2)+64mcÎ1(1, 1, 3)

+32mcÎ1(2, 1, 2)+128mcm
2
b Î1(2, 1, 3)

−128mcÎ
[0,1]
1 (2, 1, 3)+64mcÎ1(3, 1, 1)

+192mcm
2
b Î1(3, 1, 2)−128mcÎ

[0,1]
1 (3, 1, 2)

+64mcm
4
b Î1(3, 1, 3)−128mcm

2
b Î
[0,1]
1 (3, 1, 3)

+64mcÎ
[0,2]
1 (3, 1, 3)+32mcÎ1(1, 2, 2)

+32mcÎ1(2, 2, 1)+32mcm
2
b Î1(2, 2, 2)

−32mcÎ
[0,1]
1 (2, 2, 2)−32mcÎ1(1, 2, 2)

+192mcm
2
b Î1(4, 1, 1)+96mcÎ1(2, 2, 1) , (C.1)

C
A1
4 = 96mcm

2
b Î0(1, 3, 1)−96mcÎ

[0,1]
0 (1, 3, 1)

+96m3cm
2
b Î0(1, 4, 1)−96m

3
cÎ
[0,1]
0 (1, 4, 1)

−384mcÎ6(1, 3, 1)−384m
3
cÎ6(1, 4, 1)

−16mcÎ0(1, 1, 2)−16mcÎ0(2, 1, 1)

−16mcm
2
b Î0(2, 1, 2)+16mcÎ

[0,1]
0 (2, 1, 2)

−64mcÎ6(2, 1, 2)−16mcÎ0(1, 1, 2)

+96mcm
2
b Î0(1, 1, 3)−96mcÎ

[0,1]
0 (1, 1, 3)

−16mcÎ0(2, 1, 1)+48mcm
2
b Î0(2, 1, 2)

−80mcÎ
[0,1]
0 (2, 1, 2)+96mcm

4
b Î0(2, 1, 3)

−192mcm
2
b Î
[0,1]
0 (2, 1, 3)+96mcÎ

[0,2]
0 (2, 1, 3)

+64mcm
2
b Î0(3, 1, 1)−96mcÎ

[0,1]
0 (3, 1, 1)

+64mcm
4
b Î0(3, 1, 2)−160mcm

2
b Î
[0,1]
0 (3, 1, 2)

+96mcÎ
[0,2]
0 (3, 1, 2)+32mcm

6
b Î0(3, 1, 3)

−96mcm
4
b Î
[0,1]
0 (3, 1, 3)+96mcm

2
b Î
[0,2]
0 (3, 1, 3)

−32mcÎ
[0,3]
0 (3, 1, 3)+64mcÎ6(2, 1, 2)

−128mcm
2
b Î6(2, 1, 3)+128mcÎ

[0,1]
6 (2, 1, 3)

−256mcm
2
b Î6(3, 1, 2)+128mcÎ

[0,1]
6 (3, 1, 2)

−128mcm
4
b Î6(3, 1, 3)+256mcm

2
b Î
[0,1]
6 (3, 1, 3)

−128mcÎ
[0,1]
6 (3, 1, 3)+32mcm

2
b Î0(1, 2, 2)

−32mcÎ
[0,1]
0 (1, 2, 2)−32mcÎ

[0,1]
0 (2, 2, 1)

+16mcm
4
b Î0(2, 2, 2)−32mcm

2
b Î
[0,1]
0 (2, 2, 2)

+16mcÎ
[0,2]
0 (2, 2, 2)−128mcÎ6(1, 2, 2)

+64mcm
2
b Î6(2, 2, 2)+64mcÎ

[0,1]
6 (2, 2, 2)

−16mcÎ0(1, 2, 1)−16mcm
2
b Î0(1, 2, 2)

+16mcÎ
[0,1]
0 (1, 2, 2)−64mcÎ6(1, 2, 2)

+96mcm
2
b Î0(3, 1, 1)+96mcm

4
b Î0(4, 1, 1)

−96mcm
2
b Î
[0,1]
0 (4, 1, 1)−384mcm

2
b Î6(4, 1, 1)

+48mcÎ0(1, 2, 1)+48mcm
2
b Î0(2, 2, 1)

−48mcÎ
[0,1]
0 (2, 2, 1)−192mcÎ6(2, 2, 1) , (C.2)

C
A2
4 = 96mcÎ2(1, 3, 1)+96m

3
cÎ2(1, 4, 1)

−96mcÎ3(1, 3, 1)−96m
3
cÎ3(1, 4, 1)

+96mcÎ5(1, 3, 1)+96m
3
cÎ5(1, 4, 1)

+16mcÎ2(2, 1, 2)−16mcÎ3(2, 1, 2)

+16mcÎ5(2, 1, 2)−32mcÎ0(1, 1, 3)

−32mcÎ0(2, 1, 2)−32mcm
2
b Î0(2, 1, 3)

+32mcÎ
[0,1]
0 (2, 1, 3)−32mcÎ2(1, 1, 3)

−16mcÎ2(2, 1, 2)+32mcÎ2(3, 1, 1)

+96mcm
2
b Î2(3, 1, 2)−64mcÎ

[0,1]
2 (3, 1, 2)

+32mcm
4
b Î2(3, 1, 3)−64mcm

2
b Î
[0,1]
2 (3, 1, 3)

+32mcÎ
[0,2]
2 (3, 1, 3)+16mcÎ3(2, 1, 2)

−32mcm
2
b Î3(2, 1, 3)+32mcÎ

[0,1]
3 (2, 1, 3)

−64mcm
2
b Î3(3, 1, 2)+32mcÎ

[0,1]
3 (3, 1, 2)

−32mcm
4
b Î3(3, 1, 3)+64mcm

2
b Î
[0,1]
3 (3, 1, 3)

−32mcÎ
[0,2]
3 (3, 1, 3)−16mcÎ5(2, 1, 2)

+32mcm
2
b Î5(2, 1, 3)−32mcÎ

[0,1]
5 (2, 1, 3)

+64mcm
2
b Î5(3, 1, 2)−32mcÎ

[0,1]
5 (3, 1, 2)

+32mcm
4
b Î5(3, 1, 3)−64mcm

2
b Î
[0,1]
5 (3, 1, 3)

+32mcÎ
[0,2]
5 (3, 1, 3)+16mcÎ0(1, 2, 2)

−32mcm
2
b Î0(2, 2, 2)+48mcÎ2(1, 2, 2)
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+16mcÎ2(2, 2, 1)−48mcm
2
b Î2(2, 2, 2)

−16mcÎ
[0,1]
2 (2, 2, 2)−32mcÎ3(1, 2, 2)

+16mcm
2
b Î3(2, 2, 2)+16mcÎ

[0,1]
3 (2, 2, 2)

+32mcÎ5(1, 2, 2)−16mcm
2
b Î5(2, 2, 2)

−16mcÎ
[0,1]
5 (2, 2, 2)−32mcÎ1(1, 2, 2)

+16mcÎ2(1, 2, 2)−16mcÎ3(1, 2, 2)

+16mcÎ5(1, 2, 2)+96mcm
2
b Î2(4, 1, 1)

−96mcm
2
b Î3(4, 1, 1)+96mcm

2
b Î5(4, 1, 1)

+48mcÎ2(2, 2, 1)−48mcÎ3(2, 2, 1)

+48mcÎ5(2, 2, 1) , (C.3)

where

Î [i,j]n (a, b, c) =
(
M21

)i (
M22

)j di

d (M21 )
i

dj

d (M22 )
j

×
[(
M21

)i (
M22

)j
În(a, b, c)

]
.
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